Analytic Solutions of the Madelung Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic solutions of the Madelung equation

We present analytic self-similar solutions for the one, two and three dimensional Madelung hydrodynamical equation for a free particle. There is a direct connection between the zeros of the Madelung fluid density and the magnitude of the quantum potential. 1 ar X iv :1 70 3. 10 48 2v 1 [ qu an tph ] 3 0 M ar 2 01 7

متن کامل

Analytic properties of matrix Riccati equation solutions

For matrix Riccati equations of platoontype systems and of systems arising from PDEs, assuming the coefficients are analytic functions in a suitable domain, the analyticity of the stabilizing solution is proved under various hypotheses. In addition, general results on the analytic behavior of stabilizing solutions are developed. I. NONSTANDARD RICCATI EQUATIONS In [10], [7] and elsewhere contin...

متن کامل

Analytic Solutions to Repulsive Nonlinear Schrödinger Equation

In this paper we make use of the the sn-ns method to obtain new exact solutions to so called repulsive or de-focusing nonlinear Schrödinger equation. These solutions are given in terms of Jacobi elliptic functions sn and ns.

متن کامل

Existence and Uniqueness of Analytic Solutions of the Shabat Equation

Sufficient conditions are given so that the initial value problem for the Shabat equation has a unique analytic solution, which, together with its first derivative, converges absolutely for z ∈ C : |z| < T , T > 0. Moreover, a bound of this solution is given. The sufficient conditions involve only the initial condition, the parameters of the equation, and T . Furthermore, from these conditions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Generalized Lie Theory and Applications

سال: 2017

ISSN: 1736-4337

DOI: 10.4172/1736-4337.1000271